《模具制造工艺学》课程思政教学案例

开课学院: 材料科学与工程学院 制作人: 邓宁

课程名称	模具制造工艺学	授课对象所属专业	材料成型与控制工程
课程类型	专业课程	开课年级	大四
课程性质	专业选修课	课程总学时	32

一、课程简介

模具制造工艺学是材料成型及控制工程的一门专业课,本专业核心课程之一。本课程主要介绍模具制造技术的发展与应用现状,模具制造工艺路线,主要的模具加工方法;模具的机械加工,主要包括一般机械加工,仿形加工,精密加工,数控加工;模具的特种加工,主要包括电火花成形加工,电火花线切割加工,电化学加工,超声波加工和激光加工;典型模具的制造工艺,主要包括模具模架制造,冷冲模制造,锻模制造,塑料模制造,压铸模制造,简易模具制造;简要介绍模具材料,模具测量,模具表面强化处理等技术。通过本课程学习,要求学生掌握各种现代模具加工方法的基本原理、特点和加工工艺,掌握各种制造方法对模具结构的要求,以提高学生分析模具结构工艺性的能力,为学生毕业设计夯实基础

二、案例基本信息

1.案例名称:集中力量办大事---电火花加工的基本原理及特点

2.对应章节: 第三章第一节 一、电火花加工的基本原理及特点

3.课程讲次:第9讲

三、案例教学目标

通过放电通道截面很小,通道中电流密度很高,从而通道中心温度可达 10000°C以上,引申出集中力量办大事的理念,这是中国特色社会主义制度无可 比拟的优越性,从而增强学生对我们党我们国家制度的更深层次的认识,激发学 生爱党、爱国、爱社会主义的深厚情怀

四、案例主要内容

集中力量办大事,从小处着眼,在大学四年每个阶段有每个阶段的主要任务,把主要精力用在主要任务上,而不是这里一下那里一下,结果是什么都没做好,就好比挖井,在一百个地方每个地方挖一下,不如在一个地方挖 100 下;

从大处着眼,集中力量办大事助力中华民族实现从站起来、富起来到强起来的历史性飞跃。新中国成立初期,国家面临一穷二白,百废待兴的局面,为了尽快建立独立工业体系,改变贫穷落后面貌,我们党发挥社会主义制度集中力量办大事的优势,将有限的人力物力财力集中起来推动社会主义工业化,在很短时间里形成了独立的工业体系和国民经济体系。为了加快实现工业、农业、国防和科学技术现代化,我们党发挥集中力量办大事的制度优势,在极其艰难的环境下研制成功"两弹一星",保障了国家安全,提高了国际地位,集中力量办大事是中国特色社会主义制度优势的突出特征,具有无可比拟的优越性

五、案例教学设计

教学节段	电火花加工的基本原理与特点	教学时长	45 分钟		
课程名称 模具制造工艺学		课程性质	专业课		
所属章节	第三章 模具的特种加工	第一节电火花	花成形加工		
授课对象	材料成型及控制工程专业				
一、教学目标					
	1.了解特种加工;				
知识目标	2.掌握电火花加工原理;				
	3.掌握电火花加工物理本质;				
能力目标	1.能通过电火花加工物理本质解	怿电火花加工 (的基本规律		
素质育人	通过放电通道截面很小,通道中电流密度很高,从而通道中心温度				
	可达 10000℃以上,引申出集中力量办大事的理念,这是中国特				
	色社会主义制度无可比拟的优越性,从而增强学生对我们党我们国				
	家制度的更深层次的认识,激发:	学生爱党、爱国	国、爱社会主义的深		

厚情怀

二、重点·难点

重点: 掌握电火花加工原理及物理本质

难点: 电火花加工的物理本质

三、教学理念与方法策略

为适应现代模具行业的用人需求,课题组结合新工科的建设理念,提出"三链融合"课程实施方案,构建"知识链"、"工程项目链"和"思政链"融合的课程体系。

授课过程中采用引导启发式融入课程思政,坚持价值塑造、知识传授和能力培养"三位一体",培养学生科技报国的家国情怀和使命担当。

四、教学实施过程

环节	教学活动		加	时间	
	教师	学生	设计意图	分配	
课中					
引入	 提出问题: 在我们插拔插座				
课堂	的瞬间为什么会有火花现	思考问题并回答	引出本讲内	5 ~~=	
主题	象?		容	分钟 	
	讲授特种加工原理, 与传统				
特种	机械加工的区别	 	 学习新知识	10	
加工		学 /	子刁别知识 	分钟	
电火	介绍电火花加工的基本原	学习新知识并思考			
#- ↓	理:基于工具电极与工件电				
花加	极之间的脉冲性火花放电		 学习新知识	10	
工原	时的电腐蚀现象来加工 		3 33174 27	分钟	
理					
中 //	1介质击穿和通道形成		ᄽᆿᅓᄼᄱᄭ	20	
电火	通过放电通道截面很小,通	学习新知识并思考 	学习新知识 	分钟	

	N 1 1 N N N N N N N N N N N N N N N N N	-					
花加	道中电流密度很高,从而通	鱼					
	道中心温度可达10000℃以	7					
工物	上,引申出集中力量办大事						
理本	的理念, 这是中国特色社会	\$					
上 中	主义制度无可比拟的优越						
质()	見 性,从而增强学生对我们党	É					
	我们国家制度的更深层次						
政案	的认识,激发学生爱党、爱	3					
例)	国、爱社会主义的深厚情体	F					
	问题创设: 小小的放电						
	通道中心温度为什么会高						
	达 10000℃以上?为什么要	5					
	对放电通道进行压缩?						
	课后知识巩固与拓展						
			hu〉조 쓰 사 고수				
		查阅资料完成作业	加深学生对				
课	拓展特种加工发展现状		知识的理解,	1			
后	汨ルスリイアル上久水が仏		提升学生总	小时			
			结归纳能力				

六、教学反思

案例思政要素的切入要更自然和多面,注重潜移默化地发挥教书育人效果